EQUILIBRES SOLIDE-LIQUIDE DU SYSTEME QUATERNAIRE Na⁺, K⁺, Mg²⁺//SO₄²⁻-H₂O A 25°C

NEZIHA MNAOUAR-KALAI¹, NAJIA KBIR-ARIGUIB¹ et MELIKA TRABELSI²

¹ Centre de Chimie Appliquée, Institut National de la Recherche Scientifique et Technique ² Laboratoire de Physico-Chimie Minérale, Ecole Normale Supérieure, 43, Rue de la liberté, le Bardo, Tunis (Tunisie)

(Reçu le 1 juillet 1986)

ABSTRACT

The 25°C isotherm of the solubility diagram of the quaternary system Na⁺, K⁺, $Mg^{2+}//SO_4^{2-}-H_2O$ was established by conductimetric and analytical measurements. Isohydric curves are given. The monovariant lines of the quaternary system and the invariant quaternary points are represented in an orthogonal projection.

RESUME

L'isotherme à 25°C du diagramme de solubilité du système quaternaire Na⁺, K⁺, $Mg^{2+}//SO_4^{2-}-H_2O$ est établie à partir de mesures conductimétriques et analytiques. Les courbes à teneur en eau constante sont données. Les lignes monovariantes quaternaires sont représentées en projection orthogonale, de même que les points invariants quaternaires.

INTRODUCTION

Ce travail est motivé par la recherche d'un procédé d'extraction du potassium sous forme de K_2SO_4 ou KCl à partir des saumures du Chott El Jerid situé dans le sud Tunisien.

Les éléments majeurs de ces saumures sont Na⁺, K⁺, Mg²⁺, Cl⁻, SO₄²⁻. Une approche rationnelle du problème nécessite donc une étude de cheminement dans un système quinaire réciproque de deuxième espèce (en raison de l'existence de trois réactions de double décomposition) comportant six systèmes binaires, neuf systèmes ternaires, deux systèmes quaternaires simples et trois systèmes quaternaires réciproques.

Plusieurs de ces systèmes ont déjà été étudiés mais les résultats de la bibliographie sont fragmentaires voire incohérents. Nous avons donc entrepris, dans un premier temps, une analyse critique des résultats expérimentaux qui fera l'objet d'une mise au point ultérieure.

Composés chimiques	Formule chimique	Abréviation
Thenardite	Na ₂ SO ₄	NS
Sel de Glauber ou mirabilite	$Na_2SO_4 \cdot 10 H_2O$	NS10
Arcanite	K ₂ SO ₄	KS
Epsomite ou sel de Bitter ou rechardite	$MgSO_4 \cdot 7 H_2O$	MS7
Glasérite	$3 K_2 SO_4$, Na ₂ SO ₄	GL
Astrakanite	$MgSO_4 \cdot Na_2SO_4, 4 H_2O$	Α
Schoénite ou picromérite	K_2SO_4 , $MgSO_4 \cdot 6 H_2O$	Sh

Appellation et abréviations des sels

Cette analyse fait apparaître en particulier que le système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻-H₂O à 25°C n'a fait l'objet d'aucun travail antérieur. Dans ces conditions, nous nous sommes proposés, dans un premier temps, d'établir son diagramme de solubilité.

Le système quaternaire simple Na⁺, K⁺, Mg²⁺//SO₄²⁻-H₂O s'appuie sur trois systèmes binaires Na₂SO₄-H₂O, K₂SO₄-H₂O, MgSO₄-H₂O et trois systèmes ternaires Na₂SO₄-K₂SO₄-H₂O, Na₂SO₄-MgSO₄-H₂O et K₂SO₄-MgSO₄-H₂O.

Excepté le système ternaire $Na_2SO_4-K_2SO_4-H_2O$, les autres systèmes ont fait l'objet d'un grand nombre de travaux. Quant au système $Na_2SO_4-K_2SO_4-H_2O$, la littérature ne cite que quelques points de la ligne monovariante correspondant probablement à la cristallisation de la glasérite [1]. Aussi avons-nous repris, dans une première étape, l'étude complète de ce système ternaire.

Nous donnons dans le Tableau 1 l'appellation des composés chimiques rencontrés dans ce système quaternaire ainsi que les abréviations correspondantes utilisées dans ce mémoire.

TECHNIQUES EXPERIMENTALES

Le mode de représentation du diagramme de solubilité adopté est celui de Lechatelier et les coordonnées choisies sont celles de Janecke [2] dont les expressions sont:

$$X = \frac{(K^+)}{D} \times 100 \qquad Y = \frac{2(Mg^{2+})}{D} \times 100 \qquad I = \frac{n_{H_2O}}{D} \times 100$$

où (N^{n^+}) représente le nombre d'ions-gramme de l'élément N considéré, D exprime la neutralité électrique:

$$D = (K^+) + (Na^+) + 2(Mg^{2+}) = 2(SO_4^{2-})$$

 $n_{\rm H_2O}$ est le nombre de moles d'eau entrant dans la composition du système considéré.

La méthode des ensembles [3] et la méthode conductimétrique [4] ont été utilisées parallèlement pour déterminer les courbes de liquidus et les nappes de solubilité.

Dans la première méthode, le mélange, maintenu dans un bain thermostaté, est agité pendant un temps suffisamment long pour la réalisation de l'équilibre entre phases. La solution saturée et le résidu solide sont alors séparés et analysés (les points représentatifs de l'ensemble, de la solution et du reste devant être alignés dans le diagramme d'équilibre). Les phases solides présentes sont de plus identifiées par leurs spectres de rayons X.

L'analyse conductimétrique consiste à suivre l'évolution de la conductivité d'une solution saturée suite à une perturbation imposée à l'un des facteurs intensifs de l'équilibre. Pour notre part, la perturbation qui écarte le système de son état d'équilibre est l'addition de faibles quantités d'eau. On est donc amené à suivre d'une façon indirecte la variation de la résistance de la solution saturée—à l'aide d'un pont de mesure de type pont de Kohlraush—une fois l'équilibre de nouveau atteint, en fonction du volume d'eau ajoutée. Pour ce faire, un mélange de composition donnée correspondant à un domaine saturé (d'une ou plusieurs phases) est préparé, avec une bonne précision, par pesée des différents constituants puis maintenu sous agitation à (25 ± 0.02) °C dans une jaquette thermostatée. Lorsque l'équilibre est atteint la solution surnageante est prélevée par aspiration dans une cellule conductimétrique thermostatée; la résistance qui permet d'équilibrer le pont est mesurée.

La courbe obtenue, exprimant la variation de la résistance mesurée en fonction du volume d'eau ajoutée, renseigne sur la solubilisation totale du mélange et parfois sur la limite des différents domaines du diagramme. Les accidents observés sur cette courbe correspondent à la disparition d'une phase ou au passage d'un domaine à un autre. L'ensemble des points de solubilité des différents mélanges permet de tracer les lignes monovariantes du diagramme.

Produits utilisés

Les matières premières utilisées sont: Na_2SO_4 anhydre, produit Merck, de pureté 99%; K_2SO_4 anhydre, produit Prolabo, de pureté 99.5%; $MgSO_4 \cdot 7$ H_2O , produit Fluka, de pureté 98%.

Méthodes de dosage

Les ions Na^+ et K^+ sont dosés par spectrophotométrie d'émission de flamme (air-butane). Le dosage est effectué en milieu sulfurique 1 N.

Les ions Mg^{2+} sont dosés par complexométrie à l'EDTA en présence du noir d'ériochrome T comme indicateur en milieu tampon ammoniacal (pH = 10) [5].

La teneur en ions SO_4^{2-} , bien que pouvant être atteinte à partir de l'équation d'électroneutralité, est déterminée par gravimétrie [5].

La teneur de la solution en eau est déterminée par différence à partir de la relation de conservation de la masse.

Les phases solides présentes dans le système étudié sont identifiées par leurs spectres de diffraction X.

RESULTATS EXPERIMENTAUX

Le système ternaire $Na_{2}SO_{4}-K_{2}SO_{4}-H_{2}O$

Le diagramme représentatif de ce système est schématisé sur la Fig. 1. Le Tableau 2 rassemble les coordonnées des points représentatifs du liquidus de ce système ternaire exprimées en composition pondérale et en coordonnées de Janecke ainsi que la nature des phases solides en équilibre.

Le système quaternaire Na, SO_4 -K, SO_4 -Mg SO_4 -H,O

Le système quaternaire simple $Na_2SO_4-K_2SO_4-MgSO_4-H_2O$ a été étudié par les deux méthodes complémentaires: la méthode conductimétrique et celle des ensembles.

La méthodologie adoptée pour l'établissement de ce diagramme est d'une part l'étude par conductimétrie de treize coupes isopléthiques dont la trace sur le plan de base du prisme de Janecke est représentée sur la Fig. 2 et, d'autre part, l'étude par la méthode des ensembles de plusieurs mélanges pris dans des coupes du prisme de Janecke. Cette démarche permet une meilleure définition des nappes de liquidus et essentiellement de déterminer la nature des phases solides en équilibre dans les différents domaines du diagramme.

Les résultats des solubilités obtenus par l'étude conductimétrique des coupes étudiées sont rassemblés dans le Tableau 3

Le Tableau 4 regroupe les résultats de l'analyse de la solution saturée et du solide en équilibre obtenus par la méthode des ensembles.

Les résultats obtenus par les deux méthodes citées permettent le tracé de la projection orthogonale des lignes monovariantes quaternaires sur le plan de base et la localisation des points invariants quaternaires (Fig. 3).

Fig. 1. Système ternaire $Na_2SO_4-K_2SO_4-H_2O_7$, isotherme à 25°C. (O) Nos résultats, (\bullet) bibliographie.

Fig. 2. Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ -H₂O. Coupes isopléthiques étudiées.

TABLEAU 2

Système ternaire $Na_2SO_4-K_2SO_4-H_2O$, isotherme à 25°C

Solution sa	turée	Phases solides				
Composition pondérale			Coordo	nnées	de Janecke	en équilibre
% K ₂ SO ₄ % Na ₂ SO ₄		% H ₂ O	X	Ŷ	Ι	-
0	21,88	78,12	0	0	1407)	
1,44	22,10	76,46	5,03	0	1295	$Na_2SO_4 \cdot 10 H_2O$
4,85	22,33	72,83	15,03	0	1093	
6,13	22,76	71,11	18,00	0	1010 ^a	$Na_2SO_4 \cdot 10 H_2O + glasérite$
6,32	21,00	72,68	19,71	0	1096)	
6,98	16,93	76,08	25,15	0	1326	
8,03	12,54	79,43	34,31	0	1641	alasérite
9,16	8,83	82,00	45,80	0	1983	glasellie
9,53	8,39	82,08	48,09	0	2002	
10,80	6,15	83,05	58,89	0	2189)	
11,26	5,70	83,04	61,67	0	2200 ^a	glasérite + $K_2 SO_4$
11,27	5,67	83,06	61,82	0	2203)	
10,57	4,84	84,59	64,05	0	2479	
10,43	3,49	86,08	70,92	0	2831 >	K_2SO_4
10,48	1,93	87,59	81,61	0	3299	-
10,91	0	89,09	100	0	3951)	

^a Valeur extrapolée.

Fig. 3. Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ -H₂O. Projection orthogonale des lignes monovariantes sur le plan de base. (-----) Isotherme à 25°C, (O) résultats de la conductimétrie, (\blacksquare) résultats de l'analyse chimique, (----) isotherme à 35°C (Bayliss).

TABLEAU 3

Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ –H₂O résultats des mesures conductimétriques

Solution sa	aturée						Phases solides		
Compositi	on pondéral	e		Coordo	nnées de	Janecke	en equinore		
% K ₂ SO ₄	% MgSO4	% Na ₂ SO ₄	% H ₂ O	X	Y	I			
Coupe A									
0	3,92	21,38	74,70	0	17,77	1132)			
2.12	3,72	20,32	73,84	6,53	16,61	1060	$Na_2SO_4 \cdot 10 H_2O$		
3,93	3,88	21,18	71,02	11,06	15,80	967)	2 . 2		
6,01	4,15	22,16	67,68	15,33	15,33	835 ^a	$Na_2SO_4 \cdot 10 H_2O +$ glasérite		
6,25	3,92	21,40	68,43	16,37	14,86	887)	-		
7,38	2,78	15,17	74,67	24,59	13,39	1233			
8.78	1.94	10.60	78,69	35,70	11,42	1620	glasérite		
9.75	1,39	7,58	81,29	46,32	9,53	1868			
10.92	1.08	5.89	82.12	55.43	7.92	2016			
11.30	1.04	5.44	82.21	58.00	7.73	2040 [′] ª	glasérite + K ₂ SO ₄		
11.14	0.98	5.34	82,54	58.28	7.41	2090 \	8		
11.32	0.89	4.86	82.94	60.96	6.93	2251			
11.05	0.70	3,83	84.42	65.93	6.05	2437	K ₂ SO ₄		
11 12	0.33	1.79	86.77	80.66	3.43	3224			
10,91	0	0	89,09	100	0	3951)			
Coupe B									
0	10,17	20,73	69,10	0	36,67	832)			
2.97	10.82	22.04	64,17	6,50	34,29	690 Ì	$Na_2SO_4 \cdot 10 H_2O$		
4,82	11,93	20,29	62,96	9,33	33,47	590 ª	$Na_2SO_4 \cdot 10 H_2O +$ glasérite		
5.18	9.56	19.48	65.78	12.07	32.25	714)	8		
7 77	5.81	11.84	74.58	25.31	27.39	1215			
9.83	3 37	6.86	79 94	42.53	21.08	1672	glasérite		
10.46	2 76	5,62	81 16	49.02	18 70	1839			
11.00	2,70	4.04	01,10 01 16	52.22	17 47	1905 a	alasárita J V SO		
11,09	2,31	4,94	01,40 01 <i>47</i>	55.09	16 47	1047	glaselile $\pm \mathbf{K}_2 5 0_4$		
11,38	2,35	4,79	01,4/	55,08	10,4/	190/	V CO		
10,58 10,91	1,20 0	2,44 0	85,78 89,09	100	0	3951	$K_2 50_4$		
Course C									
0	13 53	21 33	65 14	0	42 81	689)			
2 56	13,01	20,50	63,93	5 50	40.47	664	astrakanite		
4.67	12,00	20,20	60,00	0.67	20 02	<001) <01 a	o atrakanita ± alasérita		
4,07	12,99	20,23	65 27	9,07	27 45	721	astrakamite + glaserite		
3,32 7 22	11,33	17,05	72 77	22,01	22,45	1020	alocárite		
7,33	7,03	11,70	13,21	22,33	20,07	1200	glasellie		
8,09 Course D	5,45	8,30	11,52	52,12	29,00	1362 /			
0	15.09	18.95	65.96	0	48 43	708 \			
2 41	14 73	18.48	64 38	5 20	45 95	671	astrakanite		
2,71 5.04	1469	1910	61,00	10.40	10,00	601 I A	actrakanite + alasérite		
5,04	14,02	16,10	62,23	10,40	43,/3	600	astrakannie – grasenne		
5,90 7 0 1	13,44	11,10	03,/0 73 00	12,81	42,22	1047	alosérite		
1,03 8 7 F	0,99 6 11	11,10 8 A 4	12,00	20,87	22.0/	1221	giaseine		
0,13	0,41	0,00	10,19	51,57	<i>>></i> ,24	1221 /			

TABLEAU 3 (continué)

Solution s	aturée	Phases solides					
Composition pondérale Coordonnées de Janeck						en équilibre	
% K ₂ SO ₄	% MgSO ₄	% Na ₂ SO ₄	% H ₂ O	X	Y	I	
Coupe E	····.						
0	16,10	17,63	66,27	0	51,88	713)	
3,15	15,84	17,34	63,67	6,66	48,43	650)	astrakanite
5.17	15.58	16.91	62.34	10.67	46,53	622 ª	astrakanite + glasérite
5.68	14.10	15,43	64,78	12,61	45,34	696)	
9,04	7,35	8,04	75,57	30,60	36,01	1267	
9,89	6,07	6,64	77,40	26,86	32,76	1396	glasérite
10,71	5,24	5,74	78,31	42,27	29,95	1494	•
11,22	4,49	4,92	79,37	47,23	27,37	1616)	
11,22	4,53	4,83	79,42	47,33	27,67	1620 ^{°a}	glasérite + $K_2 SO_4$
11,02	3,75	3,99	81,24	51,60	25,47	1840)	
10,90	2,25	2,46	84,39	63,43	18,97	2376 }	K ₂ SO ₄
10,91	0	0	89,09	100	0	3951)	
Coupe F							
0	19,10	15,03	65,87	0	60,00	691	astrakanite
2,89	18,35	1 4,4 4	64,31	6,13	56,32	659∫	asuakanite
4,96	18,18	14,14	62,72	10,20	54,13	624 ^a	astrakanite + glasérite
5,47	16,27	12,80	65,46	12,23	52,67	708 _\	
6,80	13,57	10,68	68,95	17,20	49,69	843	
7,58	12,51	9,84	70,07	20,06	47,97	897	alosérite
8,36	10,69	8,41	72,55	24,47	45,32	1058 🏹	glasellie
10,17	7,34	5,77	76,72	36,47	38,12	1331	
11,14	6,22	4,90	77,74	42,58	34,46	1438)	
11,34	6,15	4,67	77,84	43,67	34,27	1450 ^a	glasérite + K_2SO_4
11,12	4,99	3,92	79,97	48,01	31,19	1671)	
10,77	2,42	1,91	84,90	64,80	21,12	2471 }	K ₂ SO ₄
10,91	0	0	89,09	100	0	3951)	
Coupe G							
0	21,82	12,78	65,40	0	66,83	669	$MgSO_4 \cdot 7 H_2O$
1,08	21,42	12,61	64, 9 0	2,27	65,20	660 ª	$MgSO_4 \cdot 7 H_2O +$ astrakanite
2,65	20,98	12,29	64,09	5,51	63,15	645	astrakanite
4,05	20,62	11,99	63,33	8,33	61,40	630 ª	astrakanite + schoénite
4,19	20,10	11,77	63,95	8,78	60,97	642 \	schoénite
5,18	18,59	10,88	65,35	11,40	59,22	695)	
6,80	15,76	9,11	68,32	16,67	55,93	810 ª	schoénite + glasérite
6,78	15,45	9,05	68,71	16,85	55,57	826 _\	
8,96	11,36	6,65	73,02	26,70	48,99	1052	alacérite
10,19	9,53	5,58	74,70	33,03	44,76	1172 }	Braserrie
10,65	8,51	4,98	75,85	36,63	42,35	1261	

TABLEAU 3 (co	ontinué)
---------------	----------

Solution s	aturée	Phases solides					
Composition pondérale Coordonné						e Janeck	e en equilibre
% K ₂ SO ₄	% MgSO4	% Na ₂ SO ₄	% H ₂ O	X	Y	I	-
Coune G		<u>_</u>					
11.30	7,71	4,46	76,53	40,47	39,93	1325 ª	glasérite + $K_2 SO_4$
11.05	7.20	4.21	77,64	41,48	39,11	1408 \	• • •
10.78	6.18	3.62	79,42	44,61	37,02	1589	
10.76	3.66	2,14	83,43	57,56	28,36	2159	V CO
8.90	2.00	1.17	87,93	67,31	21,85	2561	$K_{2}SO_{4}$
10.86	1.07	0.62	87.45	82,47	11,72	3214	
10,91	0	0	89,09	100	0	3951)	
Coupe H							
0	23,31	9,01	67,69	0	77,33	731)	M-SO 7H O
2.68	22,55	8,71	66,05	5,83	70,94	694)	$MgSO_4 \cdot / H_2O$
4,38	22,16	8,51	64,96	9,33	68,40	670 ^a	$MgSO_4 \cdot 7 H_2O +$
5 1 1	19 91	7 69	67.29	11.79	66.45	750	schoénite
9.25	13.27	5.07	72.42	26.67	55.40	1010 ª	schoénite $+$ glasérite
9.97	12 10	4 68	73.26	30.01	52.73	1067	glasérite
11.08	10.43	3,99	74.50	35.67	48.60	1160 ^a	glasérite + $K_2 SO_4$
11,00	8 96	3.46	76.52	39.11	45.87	1309 \	8
10.92	3 31	1 28	84.48	63.18	27.74	2363	K _a SO.
10,92	0	0	89,09	100	0	3951	20+4
Coupe I							
0	24,62	5,75	69,62	0	83,48	789 \	M-SO 7H O
3,20	23,83	5,57	67,40	7,18	77,47	.732)	$MgSO_4 \cdot / \Pi_2 O$
4.57	23.75	5.52	66.16	10.00	75.20	700 ^a	$MgSO_4 \cdot 7 H_2O + schoen$
5.47	20.76	4.85	68,92	13,18	72,47	804)	
8.67	15.20	3.55	72.57	24.75	62.82	1002	schoénite
10.23	13.24	3.09	73.44	30.83	57.74	1070	
11.09	12.12	2.73	74.06	34.67	54.87	1120 ª	schoénite + $K_2 SO_4$
10.92	9.68	2.26	77.14	39.41	50.58	1347)	
11.01	3.77	0.88	84.34	62.73	31.11	2324	K ₂ SO₄
10,91	0	0	89,09	100	0	3951)	2
Coupe J							
9,53	0	8,39	82,08	48,09	0	2002	
9,10	3,92	8,00	78,97	36,99	23,09	1553	alocárita
8,39	10,70	7,38	73,53	25,48	47,03	1080 (glasellie
8,23	12,46	7,24	72,06	23,41	51,31	991)	
7,99	14,67	6,99	70,35	21,13	56,20	900 ^a	glasérite + schoénite
6,75	17,10	6,19	69,95	17,27	63,30	865)	-
4,61	23,91	4,06	67,42	10,43	78,32	738 Ì	schoenite
4,49	24,85	3,85	66,80	9,93	79,60	715 ª	schoénite +
2.66	36.07	2.00	(0.27	0.00	01.10	760	$MgSO_4 \cdot 7 H_2O$
3,50	25,07	3,08	08,36	8,03	83,30	/39	N-60 711 0
1,68	25,43	1,48	/1,41	4,16	91,34	85/	$MgSO_4 \cdot / H_2O$
0	27,12	U	72,88	0	100	898 /	

TABLEAU 3 (continué)

Solution s	aturée	Phases solides					
Compositi	on pondéra	en équilibre					
% K ₂ SO ₄	% MgSO ₄	% Na ₂ SO ₄	% H ₂ O	X	Y	I	
Coupe K							
3,32	0	22,18	74,50	10,88	0	1180)	
3,15	5,36	21,04	70,45	8,58	21,12	928 👌	$Na_2SO_4 \cdot 10 H_2O$
3,24	10,15	21,65	64,96	7,29	33,02	706)	
3,42	12,12	21,99	62,46	7,13	36,60	630 ^a	$Na_2SO_4 \cdot 10 H_2O +$ astrakanite
3,04	13,24	20,27	63,45	6,45	40,72	652)	
1,89	21,22	12,59	64,30	3,93	63,93	647)	astrakanite
1,89	21,72	12,30	64,09	3,90	64,93	640 ^a	astrakanite + MgSO₄· 7 H₂O
1 51	22.38	10.08	66.03	3.26	70.02	690)	, 1120
0.75	24 82	4.98	69.45	1.75	83.96	785	MgSO4 · 7 H2O
0	27,12	0	72,88	0	100	898	
Coupe L	,		,				
1,61	0	21,88	76,50	5,67	0	1300	
1,62	1,73	21,37	75,28	5,33	8,27	1200	
1,58	3,47	21,09	73,86	4,87	15,47	1100	
1,56	5,36	20,87	72,21	4,47	22,20	1000 (N ₂ , SO , 10 H O
1,54	7,51	20,67	70,28	4,07	28,80	900 /	Na ₂ 304.10 II ₂ 0
1,56	9,69	20,79	67,96	3,80	34,13	800	
1,60	10,76	21,01	66,62	3,73	36,27	750	
1,62	11,77	21,47	65,14	3,60	37,87	700)	
1,66	12,82	21,84	63,68	3,53	39,47	655 ^a	$Na_2SO_4 \cdot 10 H_2O +$ astrakanite
1,61	13,18	20,95	64,26	3,47	41,13	670)	
1,34	15,61	17,78	65,27	2,93	49,40	690	
1,25	16,94	16,37	65,43	2,73	53,47	690	astrakanite
1,09	19,82	14,01	65,08	2,33	61,07	670	
1,02	21,55	12,70	64,73	2,13	65,27	655 ^{°a}	astrakanite + MgSO(-7 HaO
0.98	21 71	12.01	65.30	2.07	66.67	670\	
0.87	22.27	10.77	66.09	1.87	69.60	690	
0.83	22.52	10.18	66.47	1.80	71.00	700	
0.59	23.68	7.46	68.27	1.33	77.87	750	$MgSO_4 \cdot 7 H_2O$
0.42	24.86	4.78	69.93	1,00	85,13	800	
0	27,12	0	72,88	0 [°]	100	898)	
Coupe M							
0	0	21,89	78,11	0	0	1407 _ک	
0,34	1,26	21,54	76,86	1,20	6,40	1300	
0,63	2,57	21,27	75,53	2,07	12,20	1200	
0,98	3,99	21,03	74,01	3,00	17,73	1100	
1,35	5,54	20,85	72,26	3,87	22,93	1000 ($Na_{2}SO_{4} \cdot 10 H_{2}O_{1}$
1,76	7,33	20,67	70,23	4,67	28,13	900 (2 4 2 -
2,21	9,14	20,83	67,82	5,40	32,27	800	
2,43	10,02	21,11	66,43	5,67	33,87	750	
2,63	10,86	21,59	64,91	3,87	35,07	700	
2,77	11,43	21,87	63,93	6,00	35,87	6707	
2,95	12,22	21,93	62,91	6,20	37,20	640 °	$Na_2SO_4 \cdot 10 H_2O +$

astraka ιu

Solution sa	Phases solides						
Compositio	en équilibre						
% K ₂ SO ₄	% MgSO4	% Na ₂ SO ₄	% H ₂ O	X	Y	I	
3,14	13,09	20,41	63,35	6,67	40,20	650)	
3,82	15,91	16,68	63,59	8,07	48,67	650	1 !
4,15	17,42	15,09	63,35	8,67	52,67	640	astrakanite
4,49	18,66	13,78	63,07	9,27	55,80	630)	
4,63	19,34	13,30	62,73	9,47	57,20	620 ^{°a}	astrakanite + schoénite
4,61	19,25	12,65	63,50	9,60	58,07	640)	
4,66	19,37	12,09	63,88	9,80	59,00	650	
4,67	19,50	11,21	64,62	10,00	60,53	670	
4,73	19,83	10,08	65,36	10,33	62,67	690	schoenite
5,08	21,35	6,12	67,45	11,67	71,07	750	
5,23	21,99	3,79	68,99	12,53	76,33	800)	

TABLEAU 3 (continué)

^a Valeur extrapolée.

Fig. 4. Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ -H₂O, isotherme à 25°C. Projection orthogonale des lignes monovariantes sur le plan de base et rabattement des systèmes

TABLEAU 4

Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ –H₂O résultats de l'analyse chimique

Solution sa	turée						Phases solides
Compositio	on pondérale	è		Coordo	nnées de	Janeck	e en équilibre
% K 2 SO4	% MgSO ₄	% Na ₂ SO ₄	% H ₂ O	X	Y	I	-
11,06	0	0	88,94	100	0	3888)	·····
10,85	0,89	1,57	86,70	77,15	9,15	2983	
10,87	2,27	0	86,85	76,76	23,24	2966	
10,41	0	2,65	86,94	76,21	0	3077 (V CO
11,00	1,60	2,87	84,53	65,33	13,73	2428 (K ₂ 50 ₄
11,10	2,94	3,43	82,53	56,75	21,76	2040	
11,02	5,81	0	83,16	56,70	43,30	2069	
10,84	3,43	4,10	81,64	52,04	23,82	1896)	
11,05	3,66	5,15	80,15	48,75	23,38	1711	K_2SO_4 + glasérite
10,30	4,57	5,74	79,38	42,98	27,63	1602	_ ·
10,96	6,61	4,89	77,54	41,33	36,07	1414	
9,27	3,64	8,99	78,10	36,24	20,62	1477	
9,78	8,29	7,07	74,86	32,10	39,41	1189	
8,34	3,54	12,61	75,51	28,83	17,70	1262	
7,63	3,45	16,00	72,91	23,66	15,50	1093	glasérite
7,61	8,49	10,79	73,11	22,96	37,11	1067	
7,13	3,47	18,43	70, 9 6	20,50	14,46	987	
6,83	3,32	18,50	71,35	19,90	14,00	1005	
6,67	8,27	12,36	72,70	19,72	35,42	1040	
6,10	8,22	13,34	72,34	17,76	34,61	1018/	
3,95	20,85	11,14	64,05	8,27	63,15	648	schoé + astra + MgSO ₄ · 7 H ₂ O
6,18	14,93	12,27	66,62	14,42	50,46	752	
5,94	13,16	17,86	63,04	12,66	40,62	650	glasérite
5,57	14,98	14,44	65,01	12,38	48,23	699)	
9,25	12,66	4,66	73,44	27,78	55,04	1067	alocárita +
7,83	14,25	6,70	71,22	21,35	56,23	939	glasellie +
7,04	15,73	8,93	68,29	17,26	55,86	810 J	schoemte
10,57	11,54	3,47	74,43	33,53	52,98	1142)	V SO I
10,53	11,73	3,45	74,29	33,16	53,49	1132	$R_2 SO_4 +$
10,24	11,43	3,50	74,82	32,95	53,24	1164)	glase + schoe
7,05	18,29	0	74,66	21,04	78 ,96	1077)	
6,43	18,58	5,41	69,58	16,09	67,31	842	
6,05	15,81	9,33	68,81	14,99	56,67	824 >	schoénite
5,94	17,23	8,90	67,93	14,21	59,67	786	
5,73	20,92	5,25	68,11	13,50	71,34	776)	
10,87	12,52	0	76,61	37,48	62,52	1278	schoénite +
10,64	12,31	0	77,04	37,39	62,61	1309)	K_2SO_4
4,19	26,24	0	69,58	9,93	90,07	798	schoénite + MgSO ₄ · 7 H ₂ O
0	23,06	7,43	69,51	0	78,54	791)	
0	25,08	3,36	71,56	0	89,81	856	$MgSO_4 \cdot 7 H_2O$
1,43	26,50	0	72,07	3,59	96,41	876)	

Solution sa	Phases solides						
Compositio	on pondérale		Coord	onnées de	en équilibre		
% K ₂ SO ₄	% MgSO ₄	% Na ₂ SO ₄	% H ₂ O	X	Y	I	
3,95	20,85	11,14	64,05	8,27	63,15	648)	$MgSO_4 \cdot 7 H_2O +$
3,87	20,97	11,12	64,04	8,08	63,41	647)	schoé + astra
3,68	16,06	16,79	63,47	7,75	48,91	646	astrakanite

TABLEAU 4 (continué)

Cette projection de l'isotherme à 25°C du système quaternaire considéré avec les rabattements des différents systèmes ternaires limites constituant les faces du prisme de Janecke est représentée sur la Fig. 4.

Une représentation de cette isotherme en perspective est donnée dans la Fig. 5.

Les courbes à teneur en eau constante dans le système quaternaire considéré sont schématisées sur la Fig. 6.

DISCUSSION

Les domaines de cristallisation à 25°C de K_2SO_4 , de $Na_2SO_4 \cdot 10 H_2O$, de $MgSO_4 \cdot 7 H_2O$, de 3 $K_2SO_4 \cdot Na_2SO_4$ (glasérite), de $K_2SO_4 \cdot MgSO_4 \cdot 6$ H_2O (schoénite) et de $MgSO_4 \cdot Na_2SO_4 \cdot 4 H_2O$ (astrakanite) ont été définis. Il a été possible de tracer avec une bonne précision les lignes monovariantes quaternaires et de déterminer les coordonnées des points invariants quaternaires. Il est apparu que la ligne monovariante de la glasérite et de l'astrakanite est une courbe à maximum qui se situe à l'intersection de cette ligne avec le segment joignant la composition des deux sels (Fig. 6b).

Par ailleurs, en comparant le diagramme que nous venons d'établir à celui établi par Bayliss et coll. [6] à 35°C (Fig. 3), il apparait que:

(1) La glaubérite (Na₂SO₄ · 10 H₂O) précipite à 25°C alors que c'est la thenardite (Na₂SO₄) qui cristallise à 35°C.

(2) Le domaine de cristallisation de l'astrakanite se trouve nettement réduit à 25°C au profit de ceux des sulfates de sodium et de magnésium. D'ailleurs certains auteurs ont signalé la disparition du domaine de cristallisation de l'astrakanite à 0°C au profit de la glaubérite [7]. Une étude à des températures intermédiaires entre 0 et 25°C pourrait apporter des précisions sur l'évolution des domaines de cristallisation dans ce système.

(3) Le domaine de cristallisation de K_2SO_4 semble ne pas subir de grande modification avec la variation de température de 35 à 25°C.

Fig. 5. Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ –H₂O, isotherme à 25°C. Représentation en perspective.

Fig. 6. Système quaternaire Na⁺, K⁺, Mg²⁺//SO₄²⁻ -H₂O, isotherme à 25°C. Courbes à teneur en eau constante.

BIBLIOGRAPHIE

- 1 W.F. Linke, Solubilities of Inorganic and Metal Organic Compounds, American Chemical Society, Vol. II.
- 2 E. Janecke, Z. Anorg. Chem., 51 (1906) 132.
- 3 A. Chretien, Ann. Chem., 12 (1929) 22.
- 4 J. Berthet, D.E.S. Sciences Physiques, Lyon, 1975.
- 5 G. Charlot, Chimie Analytique Quantitative II, 6ème édn., Masson et Cie, Paris, 1974, p. 437.
- 6 N.S. Bayliss, A.R.H. Cole, W.E. Ewers et N.K. Jones, J. Am. Chem. Soc., 69 (1947) 2033.
- 7 O.K. Yanat'eva et W.T. Orlova, Zh. Neorg. Khim., 3 (1958) 2408.